Intro Reinforcement Learning

Lecture 16
What will you take home today?

Reinforcement Learning

- Recap of Policy Iteration
- Sampling-based Reinforcement Learning
- Q-Learning
- Example Applications
- Policy Gradients
The Reinforcement Learning Problem

From ‘Optimal and Learning Control’ by Buchli et al.
Markov Decision Process

Markov Property

\[\Pr \left(x_{n+1} \mid x_n, x_{n-1}, \ldots, x_0 \right) = \Pr \left(x_{n+1} \mid x_n \right) \]

\[P^u_{x x'} = \Pr \left[x_{n+1} = x' \mid x_n = x, u_n = u \right] \]

\[R^u_{x x'} = E \left[r_n \mid x_{n+1} = x', u_n = u, x_n = x \right] \]

\[R^u_x = \sum_{x'} P^u_{x x'} R^u_{x x'} \]
The Reinforcement Learning Problem

\[R^*_0 = r_0 + \alpha r_1 + \alpha^2 r_2 + \ldots + \alpha^n r_n + \ldots = \sum_{k=0}^{\infty} \alpha^k r_k \]

\[\pi^* = \arg\max_\pi \mathbb{E} (R^*_0) \]

\[R_n = \sum_{k=0}^{\infty} \alpha^k r_{n+k} \]

→ stochastic reward function
→ stochastic transition dynamics
→ stochastic policy
Deriving the Value function and Bellman Equation

Goal: Find the policy that maximizes $E \{ \text{accumulated reward} \}$

$$V^\pi(x) = E\{R_n \mid x_n = x\} = E \left\{ \sum_{k=0}^{\infty} \alpha^k r_{n+k} \mid x_n = x \right\}$$

how effective a policy is

$$V^\pi(x) = E_{u_n, r_n, x_{n+1}} \left[r_{n+1} + \alpha V^\pi(x) \mid x_n = x \right]$$

$= recursive$ expression of Value function
Solving the Value function

\[V^\pi(x) = \underbrace{E_{u_n,r_n,x_{n+1}} \{ r_n + \alpha V^\pi(x') \mid x_n = x \}}_{\text{Previous slide}} \]

\[
= E_{u_n} \{ E_{r_n,x_{n+1}} \{ r_n + \alpha V^\pi(x') \mid u_n = u, x_n = x \} \mid x_n = x \}
\]

Plug in known transition probabilities & reward function

\[V^\pi(x) = \sum_u \sum_{x'} P^u_{x,x'} [R^u_{x,x'} + \alpha V^\pi(x')] \]
The Q-Function

\[V^\pi(x) = E\{R_n \mid x_n = x\} = E \left\{ \sum_{k=0}^{\infty} \alpha^k r_{n+k} \mid x_n = x \right\} \]

\[Q^\pi(x, u) = \text{expected accumulated reward when starting at } x, \text{ choosing } u \text{ and then following } \pi \]

\[= E_{\pi} \left[R_n \mid x_n = x, u_n = u \right] = E \left\{ \sum_{l=0}^{\infty} c^l r_{n+l} \mid x_n = x, u_n = u \right\} \]

\[V^\pi(x) = \sum_{u} \pi(x, u) Q^\pi(x, u) \]
Deriving the Bellman Equation in terms of the Q-function

\[
Q^\pi(x, u) = E\{R_n \mid x_n = x, u_n = u\} = E \left\{ \sum_{k=0}^{\infty} \alpha^k r_{n+k} \mid x_n = x, u_n = u \right\}
\]

\[
Q^\pi(x_n, u) = \bar{E} \sum_{r_n, x_{n+1}} r_n + \alpha \sum_{u'} \Pi(x', u') Q^\pi(x', u')
\]

recursive expr.

\[
Q^\pi(x_n, u) = \sum_{x'} Q^\pi_{x, x'} \left[R^u_{x, x'} + \alpha \sum_{u'} \Pi(x', u') Q^\pi(x', u') \right]
\]
Optimal policy

\[V^*(x) \geq V^\pi(x) \]

\[V^*(x) = \max_\pi V^\pi(x) \]

\[Q^*(x, u) = \max_\pi Q^\pi(x, u) \]

\[V^*(x) = \sum_a \pi^*(x, u) Q^*(x, u) \]
Policy Evaluation – How to compute V and Q?

$$V^\pi(x) = \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u [R_{xx'}^u + \alpha V^\pi(x')]$$

$$V = AV + B$$

$$[A_{i,j}] = \alpha \sum_u \pi(x_i, u) P_{xix_j}^u$$

$$[B_i] = \sum_u \pi(x_i, u) \sum_{x'} P_{xix'}^u R_{xix'}^u$$

$$V_{k+1}(x) = \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u [R_{xx'}^u + \alpha V_k(x')]$$
Algorithm for Policy Evaluation

Algorithm 1 Iterative Policy Evaluation Algorithm

Input: \(\pi \), the policy to be evaluated

\[V(x) = 0 \text{ for all } x \in \mathcal{X}^+ \]

repeat
\[\Delta \leftarrow 0 \]
for each \(x \in \mathcal{X} \)
\[u \leftarrow V(x) \]
\[V(x) \leftarrow \sum_u \pi(x, u) \sum_{x'} P_{xx'}^u [R_{xx'}^u + \gamma V(x')] \]
\[\Delta \leftarrow \max(\Delta, |u - V(x)|) \]
until \(\Delta < \theta \) (a small positive number)

Return: \(V \approx V^\pi \)
Policy Evaluation with Q-Function

\[V_{k+1}(x) = \sum_u \pi(x, u) \sum_{x'} P^u_{xx'} [R^u_{xx'} + \alpha V_k(x')] \]

\[Q_{k+1}(x, u) = \sum_{x'} P^u_{xx'} \left[R^u_{xx'} + \alpha \sum_{u'} \pi^*(x', u') Q_k(x', u') \right] \]
Policy Improvement

Conditions for a superior policy:

\[\forall x \in X : \quad V^\pi'(x) \geq V^\pi(x) \]

\[\exists x \in X : \quad V^\pi'(x) > V^\pi(x) \]

Intuition:

Given \(T^\pi \) & \(V^\pi \), how the reward changes if you use a new \(u \) but then follow the old \(T^\pi \).

Compare \(V(x) \) with \(Q(x, u) \).
Policy Improvement Theorem

\[Q^\pi(x, \mu'(x)) \geq V^\pi(x) \]

\[V^\pi(x) \leq V^{\pi'}(x) \]

\[\pi'(x) = \arg\max_u Q^\pi(x, u) \]

\[= \arg\max_u E \{ r_n + \alpha V^\pi(x_{n+1}) | x_n = x, u_n = u \} \]
Policy Iteration

\[V \rightarrow V^\pi \rightarrow \text{evaluation} \rightarrow \text{greedy}(V) \rightarrow \text{improvement} \]

\[\pi \rightarrow \pi^* \rightarrow V^* \]
Algorithm 2 Policy Iteration

1. Initialization
 select $V(x) \in \mathbb{R}$ and $\pi(x) \in U$ arbitrarily for all $x \in X$
2. Policy evaluation
 repeat
 $\Delta \leftarrow 0$
 for each: $x \in X$
 $v \leftarrow V(x)$
 $V(x) \leftarrow \sum_u \pi(x, u) \sum_{x'} \mathcal{P}^{u}_{x,x'}[\mathcal{R}^{u}_{x,x'} + \alpha V(x')]$
 $\Delta \leftarrow \max(\Delta, |v - V(x)|)$
 until $\Delta < \theta$ (a small positive number)
3. Policy Improvement
 policyIsStable \leftarrow true
 for $x \in X$ do
 $b \leftarrow \pi(x)$
 $\pi(x) \leftarrow \arg\max_u \sum_{x'} \mathcal{P}^{u}_{x,x'}[\mathcal{R}^{u}_{x,x'} + \alpha V(x')]$
 if $b \neq \pi(x)$ then
 policyIsStable \leftarrow false
 end if
 end for
 if policyIsStable then
 stop
 else
 go to 2
 end if
Return: a policy, π, such that: $\pi(x) = \arg\max_u \sum_{x'} \mathcal{P}^{u}_{x,x'}[\mathcal{R}^{u}_{x,x'} + \alpha V(x')]$
Value Iteration

\[V_{k+1}(x) = \max_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \alpha V_k(x') \right] \]

Algorithm 3 Value Iteration

Initialization: \(V(x) \in \mathbb{R} \) and \(\pi(x) \in U \) arbitrarily for all \(x \in X \)

repeat

\[\Delta \leftarrow 0 \]

for \(x \in X \) do

\[v \leftarrow V(x) \]

\[V(x) \leftarrow \max_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \alpha V(x') \right] \]

\[\Delta \leftarrow \max(\Delta, |v - V(x)|) \]

end for

until \(\Delta < \theta \) (a small positive number)

Return: a policy, \(\pi \), such that: \(\pi(x) = \arg \max_u \sum_{x'} P_{xx'}^u \left[R_{xx'}^u + \alpha V(x') \right] \)
Generalized Policy Iteration

Do the switch between Policy evaluation & improvement at any round

⇒ guaranteed to converge
Sample-based RL

Goal: Estimate reward transition function from samples

Approach: $\pi(x) = \text{argmax}_u Q^\pi(x,u)$

directly estimate

Algorithm 2 Policy Iteration

1. Initialization
 select $V(x) \in \mathbb{R}$ and $\pi(x) \in \mathbb{U}$ arbitrarily for all $x \in \mathcal{X}$

2. Policy evaluation
 repeat
 $\Delta \leftarrow 0$
 for each: $x \in \mathcal{X}$
 $v \leftarrow V(x)$
 $V(x) \leftarrow \sum_u \pi(x,u) \sum_{x'} P_u^u [R^u_{xx'} + \alpha V(x')]$
 $\Delta \leftarrow \max(\Delta, |v - V(x)|)$
 until $\Delta < \theta$ (a small positive number)

3. Policy Improvement
 $\text{policyIsStable} \leftarrow \text{true}$
 for $x \in \mathcal{X}$ do
 $b \leftarrow \pi(x)$
 $\pi(x) \leftarrow \text{argmax}_u \sum_{x'} P_u^u [R^u_{xx'} + \alpha V(x')]$
 if $b \neq \pi(x)$ then
 $\text{policyIsStable} \leftarrow \text{false}$
 end if
 end for
 if policyIsStable then
 stop
 else
 go to 2
 end if

Return: a policy, π, such that: $\pi(x) = \text{argmax}_u \sum_{x'} P_u^u [R^u_{xx'} + \alpha V(x')]$
Policy Iteration with Q-function

\[\pi^*(x) = \arg\max_{\pi} E \{ r_n + \alpha V^*(x') \mid x_n = x \} \]
\[= \arg\max_{\pi} \sum_{x'} P_{xx'}^u [R_{xx'} + \alpha V^*(x')] \]

\[T^*(x) \leftarrow \arg\max_u Q^{\pi^*}(x, u) \]

Algorithm 4: Generalized Policy Iteration (GPI) using the action value function \(Q^\pi(x, u) \)

1. Initialization
 \(Q^\pi(x, u) \in \mathbb{R} \)
2. Policy Evaluation (PE)
 repeat
 for select a pair \((x, u)\) with \(x \in \mathcal{X}, u \in \mathcal{U}\) do
 \[v \leftarrow Q^\pi(x, u) \]
 \[Q^\pi(x, u) \leftarrow \sum_{x'} P_{xx'}^u [R_{xx'} + \alpha \sum_u \pi (x', u) Q^\pi (x', u)] \]
 end for
 until "individual PE criterion satisfied"
3. Policy Improvement
 policy-stable \(\leftarrow\) true
 for \(x \in \mathcal{X}\) do
 \[b \leftarrow \pi(x) \]
 \[\pi(x) \leftarrow \arg\max_{\pi} \sum_{x'} P_{xx'}^u [R_{xx'} + \alpha V(x')] \]
 if \(b \neq \pi(x)\) then
 policy-stable \(\leftarrow\) false
 end if
 end for
 if (policy-stable == true) then
 stop;
 else
 go to 2.
 end if

From ‘Optimal and Learning Control’ by Buchli et al.
Policy Iteration with Q-function

Model-free Policy Evaluation:

\[
Q^\pi(x, u) = E\pi \{ R_n \mid x_n = x, u_n = u \}
\]

\[
\hat{Q}_N^\pi(x, u) \sim \text{taking the entire roll out into account}
\]

\[
\frac{1}{N} \sum_{i=1}^{N} \left(R^i_n + \alpha r^i_{n+1} + 2 r^i_{n+1} \right) \quad \text{more efficient}
\]

Algorithm 4 Generalized Policy Iteration (GPI) using the action value function \(Q^\pi(x, u)\)

1. Initialization
 \(Q^\pi(x, u) \in \mathbb{R}\)

2. Policy Evaluation (PE)
 repeat
 for select a pair \((x, u)\) with \(x \in X, \ u \in U\) do
 \[
 v \leftarrow Q^\pi(x, u)
 \]
 \[
 Q^\pi(x, u) \leftarrow \sum_{x'} P_{xx'}^{u} [R_{xx'}^u + \alpha \sum_{u'} \pi(x', u) Q^\pi(x', u)]
 \]
 end for
 until "individual PE criterion satisfied"

3. Policy Improvement
 policy-stable \(\leftarrow\) true
 for \(x \in X\) do
 \[
 b \leftarrow \pi(x)
 \]
 \[
 \pi(x) \leftarrow \arg\max_{u} \sum_{x'} P_{xx'}^{u} [R_{xx'}^u + \alpha V(x')]\]
 if \(b \neq \pi(x)\) then
 policy-stable \(\leftarrow\) false
 end if
 end for
 if (policy-stable == true) then
 stop;
 else
 go to 2.
 end if
end if

From 'Optimal and Learning Control' by Buchli et al.
Q-Learning
Combines Sample-based RL and Dynamic Programming

Goal: Estimate optimal Q-function

\[Q^*(x_n, u_n) = E \left\{ r_n + \alpha \max_{u'} Q^*(x', u') \mid x_n = x, u_n = u \right\} \]

\[\tilde{Q}^{i+1}(x_n, u_n) = \tilde{Q}^i(x_n, u_n) + \omega_{i+1} \left[r_n^{i+1} + \alpha \max_{u'_n} \tilde{Q}^i(x'_n, u'_n) - \tilde{Q}^i(x_n, u_n) \right] \]

\[\tilde{Q}_{N+1}^\pi(x, u) = \tilde{Q}_N^\pi(x, u) + \omega_{N+1} \cdot \left(R_{N+1} - \tilde{Q}_N^\pi(x, u) \right) \]

\[\text{only take neighbouring states into account} \]

\[\text{taking the entire tail of rollout} \]
Q-Learning Algorithm

Algorithm 7 Q-Learning

Initialize \(Q(x, u) \) arbitrarily

Repeat for each episode:

Initialize \(x \)

repeat (for each step of episode):

Choose \(u \) from \(x \) using policy derived from \(Q \) (e.g., \(\varepsilon - \) greedy)

Take action \(u \), observe \(r, x' \)

\[
Q(x, u) \leftarrow Q(x, u) + \omega [r + \gamma \max_{u'} Q(x', u') - Q(x, u)]
\]

\(x \leftarrow x' \) \hspace{1cm} \(0 < \alpha < 1 \)

until \(x \) is terminal

From 'Optimal and Learning Control' by Buchli et al.
What is Deep RL or Deep Q-Learning?

\[Q(s, a; \theta) \approx Q^*(s, a) \]

Approximate optimal Q-function with a function parameterized \(\theta \).
Deep Q-Learning

Approximate Q function via to satisfy Bellman:

\[Q^*(s, a) = \mathbb{E} \left[r + y \max_{a'} Q^*(s', a') \mid s, a \right] \]

Forward Pass:

Loss function:

\[l_i(\theta_i) = \mathbb{E}_{s, a \sim p(c)} \left[(y_i - Q(s, a; \theta_i))^2 \right] \]

where

\[y_i = \mathbb{E}_{s'} \left[r + y \max_{a'} Q(s', a'; \theta_{i-1}) \mid s, a \right] \]

Backward Pass: Gradient update wrt. to Q-function parameters \(\theta \)

\[\nabla_{\theta_i} l_i(\theta_i) = \mathbb{E} \left[r + y \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right] \nabla_{\theta_i} Q(s, a; \theta_i) \]
Case Study: Playing Atari

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.
Q-network Architecture

$Q(s, a; \theta)$:
neural network with weights θ

- FC-4 (Q-values)
- FC-256
- 32 4x4 conv, stride 2
- 16 8x8 conv, stride 4

Current state s_t: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Output:
$Q(s_t, a_1)$
$Q(s_t, a_2)$
$Q(s_t, a_3)$
$Q(s_t, a_4)$

[Mnih et al. NIPS Workshop 2013; Nature 2015]
Experience Replay

Q-learning is off-policy. But in practice, the policy affects you into particular states.

- Update some memory table of transitions as the game is played.
- Greater data efficiency.